Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.

Identifieur interne : 001346 ( Main/Exploration ); précédent : 001345; suivant : 001347

Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.

Auteurs : Tiffany Victor [États-Unis] ; Natalie Delpratt [États-Unis] ; Sarah Beth Cseke [États-Unis] ; Lisa M. Miller [États-Unis] ; Leland James Cseke [États-Unis]

Source :

RBID : pubmed:28263570

Descripteurs français

English descriptors

Abstract

Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. To study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammonium nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm-1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. This study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.

DOI: 10.1021/acs.analchem.6b04376
PubMed: 28263570


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.</title>
<author>
<name sortKey="Victor, Tiffany" sort="Victor, Tiffany" uniqKey="Victor T" first="Tiffany" last="Victor">Tiffany Victor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794</wicri:regionArea>
<wicri:noRegion>New York 11794</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delpratt, Natalie" sort="Delpratt, Natalie" uniqKey="Delpratt N" first="Natalie" last="Delpratt">Natalie Delpratt</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973</wicri:regionArea>
<wicri:noRegion>New York 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Sarah Beth" sort="Cseke, Sarah Beth" uniqKey="Cseke S" first="Sarah Beth" last="Cseke">Sarah Beth Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899</wicri:regionArea>
<wicri:noRegion>Alabama 35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miller, Lisa M" sort="Miller, Lisa M" uniqKey="Miller L" first="Lisa M" last="Miller">Lisa M. Miller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794</wicri:regionArea>
<wicri:noRegion>New York 11794</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973</wicri:regionArea>
<wicri:noRegion>New York 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Leland James" sort="Cseke, Leland James" uniqKey="Cseke L" first="Leland James" last="Cseke">Leland James Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899</wicri:regionArea>
<wicri:noRegion>Alabama 35899</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28263570</idno>
<idno type="pmid">28263570</idno>
<idno type="doi">10.1021/acs.analchem.6b04376</idno>
<idno type="wicri:Area/Main/Corpus">001415</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001415</idno>
<idno type="wicri:Area/Main/Curation">001415</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001415</idno>
<idno type="wicri:Area/Main/Exploration">001415</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.</title>
<author>
<name sortKey="Victor, Tiffany" sort="Victor, Tiffany" uniqKey="Victor T" first="Tiffany" last="Victor">Tiffany Victor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794</wicri:regionArea>
<wicri:noRegion>New York 11794</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delpratt, Natalie" sort="Delpratt, Natalie" uniqKey="Delpratt N" first="Natalie" last="Delpratt">Natalie Delpratt</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973</wicri:regionArea>
<wicri:noRegion>New York 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Sarah Beth" sort="Cseke, Sarah Beth" uniqKey="Cseke S" first="Sarah Beth" last="Cseke">Sarah Beth Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899</wicri:regionArea>
<wicri:noRegion>Alabama 35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miller, Lisa M" sort="Miller, Lisa M" uniqKey="Miller L" first="Lisa M" last="Miller">Lisa M. Miller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794</wicri:regionArea>
<wicri:noRegion>New York 11794</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973</wicri:regionArea>
<wicri:noRegion>New York 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Leland James" sort="Cseke, Leland James" uniqKey="Cseke L" first="Leland James" last="Cseke">Leland James Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899</wicri:regionArea>
<wicri:noRegion>Alabama 35899</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Laccaria (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrates (analysis)</term>
<term>Nitrates (metabolism)</term>
<term>Nutrients (analysis)</term>
<term>Nutrients (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Rhizosphere (MeSH)</term>
<term>Spectroscopy, Fourier Transform Infrared (methods)</term>
<term>Sucrose (analysis)</term>
<term>Sucrose (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Laccaria (métabolisme)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Nitrates (analyse)</term>
<term>Nitrates (métabolisme)</term>
<term>Nutriments (analyse)</term>
<term>Nutriments (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Rhizosphère (MeSH)</term>
<term>Saccharose (analyse)</term>
<term>Saccharose (métabolisme)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrates</term>
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Nitrates</term>
<term>Nutriments</term>
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Nutrients</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Laccaria</term>
<term>Mycorrhizae</term>
<term>Nitrates</term>
<term>Nutrients</term>
<term>Populus</term>
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Spectroscopy, Fourier Transform Infrared</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Laccaria</term>
<term>Mycorhizes</term>
<term>Nitrates</term>
<term>Nutriments</term>
<term>Populus</term>
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Rhizosphere</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Rhizosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. To study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammonium nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm
<sup>-1</sup>
due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. This study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28263570</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.</ArticleTitle>
<Pagination>
<MedlinePgn>4831-4837</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.analchem.6b04376</ELocationID>
<Abstract>
<AbstractText>Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. To study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammonium nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm
<sup>-1</sup>
due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. This study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Victor</LastName>
<ForeName>Tiffany</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delpratt</LastName>
<ForeName>Natalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cseke</LastName>
<ForeName>Sarah Beth</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Lisa M</ForeName>
<Initials>LM</Initials>
<Identifier Source="ORCID">0000-0002-2912-7991</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cseke</LastName>
<ForeName>Leland James</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Science, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055399" MajorTopicYN="N">Laccaria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28263570</ArticleId>
<ArticleId IdType="doi">10.1021/acs.analchem.6b04376</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Victor, Tiffany" sort="Victor, Tiffany" uniqKey="Victor T" first="Tiffany" last="Victor">Tiffany Victor</name>
</noRegion>
<name sortKey="Cseke, Leland James" sort="Cseke, Leland James" uniqKey="Cseke L" first="Leland James" last="Cseke">Leland James Cseke</name>
<name sortKey="Cseke, Sarah Beth" sort="Cseke, Sarah Beth" uniqKey="Cseke S" first="Sarah Beth" last="Cseke">Sarah Beth Cseke</name>
<name sortKey="Delpratt, Natalie" sort="Delpratt, Natalie" uniqKey="Delpratt N" first="Natalie" last="Delpratt">Natalie Delpratt</name>
<name sortKey="Miller, Lisa M" sort="Miller, Lisa M" uniqKey="Miller L" first="Lisa M" last="Miller">Lisa M. Miller</name>
<name sortKey="Miller, Lisa M" sort="Miller, Lisa M" uniqKey="Miller L" first="Lisa M" last="Miller">Lisa M. Miller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001346 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001346 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28263570
   |texte=   Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28263570" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020